UNCLASSIFIED

AD NUMBER

AD249141

NEW LIMITATION CHANGE

TO
Approved for public release, distribution
unlimited

FROM
Distribution authorized to U.S. Gov't.
agencies and their contractors;
Administrative/Operational Use; OCT 1960.
Other requests shall be referred to US
Navy Office of Naval Research, Washington,
DC 20350.

AUTHORITY

ONR ltr 9 Nowv 1977

THIS PAGE IS UNCLASSIFIED




THIS REPORT HAS BEEN DELIMITED
AND CLEARED FOR PURL:C RELEASE
UNDER DOD DIRECTIVE 5200,20 AND
NO RESTRICTIGNS ARE IMPOSED UPON
ITS USE AND DISCLOSURE,

DISTRIBUTION STATEMENT A

APPRUVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED,




UNCLASSIFIED

b— Y

w249 141

Reproduced
by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

UNCLASSIFIED




o e

NOTICE: Wwhen govermment or other drawings, speci-~
fications or other data are used for any purpose
other than in connection with a definitely related
govermment procurement operation, the U. S.
Government thereby incurs no responsibility, nor any
obligation whatsoever; and the fact that the Govern-
ment may have formulated, furnished, or in any way
supplied the said drawings, specifications, or other
data is not to be regarded by implication or other-
vise as in any manner licensing the holder or any
other person or corporation, or conveying any rights
or permission to manufacture, use or sell any

patented invention that may in any way be related
thereto.




Al 4~

{
i

L2
3
L
5
S
|
o
=
S

@olumbia Aniversity
tn the @ity of New Jork

DEPARTMENT OF CIVIL ENGINEERING
AND ENGINEERING MECHANICS

Institute of Flight Structures

DIFFRACTION OF A PLANE SHOCKWAYVE
BY AN ARBITRARY RIGID
CYLINDRICAL OBSTACLE

by
M. B. FRIEDMAN
and
R. SHAW
Office of Naval Research ’
Project NR 064-428 ~ =
Contract Nonr 266(08) S
Technical Report No. 25 v JAN17 1961

CU-2-60-ONR 266(08)-CE AN

Bant
.

October 1960

Rq;roduction in whole or ini part i permitted for sny purpose
of the United States Government.




@olumbia Aniversity
in the Gity of New York

DEPARTMENT OF CIVIL ENGINEERING

- -AND ENGINEERING MECHANICS

Institute of Flight Structures
Y R~

DIFFRACTION OF A PLANE SHOCKWAVE
BY AN ARBITRARY RIGID

CYLINDRICAL OBSTACLE
by
M. B. FRIEDMAN
and
R. SHAW

Office of Naval Research
Project NR 064-428
Contract Nonr 266(08)
Technical Report No. 25
_ CU-2-60-ONR 266(08)-CE

Qctober 1960

Reproduction in whole or in part is permitted for any purpose
of the United States Government,

R e Cae e

PE-TR

NSNS O K e v
SRR B e

S

S RN R L



SUMMARY

The two dimensional problem of the interaction of a plane weak
shock wave with a cylindrical obstacle of arbitrary cross section is
considered, An integral equation for the surface values of the potene
tial is formulated and solved approximately for the case of a square

box with completely rigid boundaries.




INTRODUCTION

This report is concerned with the tvo dimensiemnal problem of the
determination of the pressure and velocity fields resulting from the in-
teraction of a plane weak shock wave with a cylindrical ebstacle of asrbi-
trary cross section. Such problems have been previously considered and
analytical solutions for a number of simple special geometries have been
found by various techmiques.

The method of images has been employed to comstruct a solution for
an infinite plane obstacle (1). Separation of variables has been used for
such simple geometries as the circuler cylinder (2). The problem of an in-
finite wedge has been solved by conformal mapping with the use of geometrical
acoustics to determine the proper region of solution (3). This latter pro-
blem has also been solved for the more genersl case of curved wave fronts
by the use of the appropriste Green's functions (k). Comnfiguratioms iavol-
ving sharp corners are characterised by the fact that these corners act as
centers of diffraction leading to different solutions in different regions
of space~time., This feature allows the construction of the solution for a

box from that for an infinite wedge but the procedure is impractical for

more than two corners.

Apart from such simple geometries the general problem does not appear
amenable to analytical solution, The use of numerical methods based on
finite differences to solve the differential equations is impractical, even
vith large scale computers, because of the three dimensional (two space, ome
time) character of the problem and the presence of discontinuities in the
field,

A significant simplification can be made, however, if the problem is
reformulated in terms of values of the presstte’. on the surface of the ob-

stacle alone. The spatial dimensions of the problem are reduced from two
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to one and this remaining space dimemsion, if the obstacle is finite, is
limited in extent. "l‘hu formulation is particularly suitable for physical
problems which require only a solution on the surface of the obstacle. 1f
the solution in the field {s also desired it cam be coustructed in & straight
forward manner from the surface values.

The procedure developed here form:lates an integral equation for the
the prissire’ at an arbitrary field point in terms of the initial wave and
an integral of time retarded values of the pressste and its derivatives
over the surface of the obstacle. An integral equation on surface values
alone is obtained by allowing the field point to approach the surface of
the obstacle; values throughout the field may be obtained by direct inte-
gration over the surface values.

The effect of the discontinuity in the pressure and the velocity at
the wave front on the surface can be separated from the remaining surface
effects and integrated directly. The remaining integrations are approximated
by assuming the surface pressure. to have an average value over specified
steps in space and time. The integrations are then replaced by summations
which, because of the time-retarded effect lead to successive algebraic nomn-
simultaneous equations on the unknown surface values., The fact that these
equations are not simulgduneess 1is vital because it permits the use of a
large number of mesh points without prohibitive computations.

The pressure distribution on the surface of a rigid square box under
a symmetric plane pulse loading is found by desk computations for time
steps up to one transit time. The portions of the solution corresponding
to the infinite wedge give excellent agreement with the known analytical

solutions (3).
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1. Initial - Boundary - Value Problem Pormulation,

The pressure field that results from the interaction of a plane
acoustic shock with a two-dimensional obstacle of arbitraryshape, rigid+
and fixed im an acoustic medium is to be detefmined Por the purpose of
analysis it in more convenient to consider a finite cylindrical obstacle of
arbitrary length and of constant cross section rather than a two dimensional
obstacle. The field corresponding to this three dimensional problem is iden-
tical in every plane section normsl to the axis of the cylinder, i.e. inde-
pendent of distance along the axis of the cylinder, for times less than thp
propagation time from the ends of the cylinder to the nearest section con-k
sidered. Over these time intervals the three dimensional field provides
the desired two dimensional solution. This is a consequence of the hyper-
bolic character of the wave equation which governs the field.

In this three dimensional field, let a cartesian coordinate system
x', y', z' be introduced with the £' axis taken parallel to the generators
of the cylinder., The cross section z' » constant is bounded by an arbitrary
piece-wise smooth curve x'(s), y'(s) vhere the parameter s is arc length
slong the boundary of the cross section [fig. 1 ]. At t = O the obstacle
is subjected to a plane acoustic shock; the line of contact between the
shock and the obstacle is taken as the z' axis. The incident shock
represents a step in pressure wvhose magnitude is used to normalisze the
pressures which are given as differences from the pressure in the undisturbed
state shead of the shock, Consequently, the states ahead and behind the
shock at t = 0, correspond respectively to p = O and p = 1 thus defining

the initial state.

*The method developed in this report is applicable to the more general case
of a non-rigid obstacle; see forthcoming reports.




The interaction field may be described in terms of a continuous

velocity potential (9 (x,y,z,t) vhich satisfies the wave equation and is

related to the pressure through p = + oolgaf In terms of (,? the inci-

dent shock is defined by

t - x.co.s&~g$’m@ y k2 LCOJP-?,\ASW\P

go ‘9"’“‘) : fa ‘9w ®
o ) Ls xwspryump

where

X ke, =4, 2= 2/

Cbeing the speed of sound and P 18 the angle between the x axis and the

normal to the incident shock front, This together with the rigid surface

Y

condition 3 & =0, n is the normal to the obstacle surface, estab-

lishes the following initfal-boundary value problem for L? .

]

D.E. Dl‘? = ‘9,‘,‘ + ‘977 * 922-4)1:& =0 T(l 1)
1.C.
t-xwss-ysmB ; O Xwspeysinp
§o P(x,3,1,0)= Pt ol
o 5 0§ xwsgeysing
2Pur 4,30 \ 5 03 xwspeysing
fo ot -
o ; O& Awespryunp

®.C. ‘Bg'}% (xY4,5%) =O ;KT X(S), §=Y(»)

RS SR - U
SR e
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Although equations (1.1) specify the problem completely, the form
is not suitable for analysis when dealing with arbitrary shapes. Instead
an equivalent formulation in terms of an integral equation can be developed

which is more amensble . te further treatment,

2, Integral Equation Formulatiom.
The integral equation can be developed by treating the problem as a

characteristic-boundary-value problem in L-dimensional space-time (x,y,z,t)
to which Green's identity may be applied, rather than as an initial-bound=
ary-value problem, Consider the surface formed by the intersection of the
characteristic hyper-plane representing the incident fr¥mt and the cylin-
drical hyper-surface representing the obstacle, in space-time, The union
of the influence domains of all the points of the surface of intersection
is a domain in he-space exterior to which the "secondary" (disturbance) po-
tential defined by ?. - ?- y' _must vanish. The boundary of this
region consists of reflection and diffraction characteristics. For 9
to be a continuous solution for all (x,y,z,t), y. must also vanish on
this boundary.

In addition to the characteristic surface, say \V (xo,yo,zo,to),
corresponding to the secondary potential, there exists at any point (x,

¥,Z,t), a characteristic half-cone T' :

. Yo
t-t. = [q,-x,.) v (Y-8 e (.!.-io)t] = R

These characteristic surface, together with the obstacle surface form a
closed regionV1n h-space vhose projection in physical space is oxtcﬂot

to the obstacle.
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2 * oy
For the wave operator D = %‘;x + -};‘ + g-i-l -3—1’.-"
Creen's identity takes the form '

(4 Cuto-w 0u)dudududs « §f i 3 -0 3) 35
v S

vhere %’ represents conormal differentiation. If now & is identified
tet

with Q , U taken as the progressive wave solution u = le -3 and V, 8

correspond to the above mentioned region and bounding surface, the identity

reduces to

SS(QSav'u- )df’*““ %&‘E%)AC=O‘(2.1)

&

Ce corresponds to a hyper-cylinder of radius & cut out of the region
V to account for the singularity in u at r = O; S' denotes the surface
of the obstacle plus the surface of the secondary disturbance in L-gpace.

For the chosen function u, the integrals over C . can be reduced to

4

X i Qa4 ) (tto)dto .
In addition, on that portion of 8' corresponding to the ‘ucondnry front,
(? s ™ O and consequently D 0'

On the obstacle surface ?sﬂi_ 2 - ?—‘21 . Hence, eq. (2.1) sim-
plifies to

= 0 since the front.{s characteristic.

Stg (XY, 3,%) (t-t)dte = i—" SS“S (Q oMo 'gs )d

Differentiating both sides twice with respect to t, yislds

. , tR
g ynt) =k 3o ({5 [ (ui-g2)dt

Selagst) ©
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Here the L-space surface integration has been separated into a surface ine
tegration so over the physical surface of the obstacle with limits de-
teramined by the intersection of the cone T'and the secondary front on
the surface of the obstacle in 4-space and a time integration whose upper
14mit is the cone T-..

The time differentiation may be carried through the So integration
since the integrand vanishes along the curves of the intersection; u vanishes

alongT-l , while (y’ vanishes along the secondary front. Hence

‘95 (le,!,t)‘: 4-‘7"[ S‘ ‘R dMo R’ ‘YS QMO O’WJ t.d.%:R

Se (x5 2,t)
Since the solution function Ly . is uniquely determined by the specifica-

tion of 30’/3% alone, as given by eq. (1.1), it follows that eq.
(2.2) represents an integral equation for (y'.

A significant simplifications can be achieved by establishing that

‘ )&w \ a&'g_
Ss ‘. R 3Me Rz &"" 61\0 R FI%) ]dbo c (2.3)
Se tort-R .
for then eq. (2.2) can be written in terms of the total potential q’ :

¢ IR ot
Juyzt)= do iy “ l R%%lo R“? :_%o* ?'l:t.n.] dt R(2 4)
4). Zort-

1. This can be considered a generalization of the classical Kirchoff's
formula, the latter dealing with a physical space of fixed extent,
i,e. so independent of time.

2. An attempt to derive this eq. for y directly, would involve consider-
ation of integrals over the characteristic secondary fromt,

3. An alternate heuristic derivation of this equation by means of Dirac
delta functions is given in Appendix I.
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Ey. (2.3) may be verified by extending the definition of ? or
t? . into a space cime. region vhose projection in physical space is interior

to the obstacle, by means of a saltus problem. Consider the region V in
4-space bounded by the three characteristic surfaces correspording to the
secondary front, the cone T‘ and the incident wave front. This region come
tains an interior boundary, namely the surface of the obstacle, For vV con-
sidered as a single region it is possible to define a solution ‘P vhich 1is
discontinuous but whose normal derivative is continuous across the obstacle
surface,

This solution is identical to é) in V as defined by eq. (2.2) while
it vanishes in the region V-V, That the latter is the correct extension follows
from the condition ‘y = O on the incident front and —%—‘&5 = 0 on the

obstacle-surface, This in turn implies 4} s ™" g v in V-V. Consequently

tet
Green's identity may be applied to this region with & = y' and yu =l - --R—o-.
Since the field point x,y,z,t is exterior to V-V, eq. (2.3) follows.

Returning to eq. (2.4), let it be differentiated with respect to
t and multiplied by o with 29 / 9 n, set equal to zero:

w oy~ S
?(x'jll)t) = \*q-'m %' j J&J di, i [‘&n (%9) + '&f M (2.5)
2 tos-2 tos £-R

vhere

Zow-2, Tk = = [{t.-(#”m»a.w*mp)}l-i X- X1} = £3-yts1]

(Zon=2)= (Roe-2) 20

and Jou ) Seq are the roots of

The differentiation may be carried out to yield




i
O
[]

Son i-u-!

{ = L ds. = "ly 280 di‘ (2'6)
p(xy,t) ln,—’{ [=? nml.m

fa‘-u.!.s.:&{[ %}[i‘lng)*’%r‘l‘.t-g}‘- fon-2

Here R° w (x-xo(a)})2 + (y-y‘,(l))2 + zz » 80 that p 1is independent of 3.
Unlike the situation encountered in obtaining eq. (2.3), the integrands of
eq.( 2.5) do not vanish at 2, =2, - % This gives rise to the last term
in eq. ( 2.6) vhich involves values of 9 and p immediately behind the
wave fromt (zo = zou-:) and may be interpreted as the effect on a field point
of the discomtinuity in the incident pressure field 3 1t can be evaluated
readily for a given x(s), y(s) since (9 (zw-z) = 0 and p(zw-:) is known,
Eq. (2.6) can be interpreted as an integral equation for the pres-
sure, Consider its behavior as the field point (x,y) approaches the surface
of the obstacle. The integrands become infinite at the point R = O, By
considering the behavior of the integrals in the vicinity of this point, it
is readily established (appendix) that these improper integrals converge in
the ordinary sense. 1In fact, the cemtiibution & the double integral from the
imaediate vicinity of this point approaches the limit value 1/2 p(x(s), y(s),t).
The remaining portién. from the double integral is finite and in the special
case of the surface point located directly behind the wave .tront, this contri-
bution vanishes. In this case the single integral. alse vanishes. This vil.o
in accord with the wall-known results that for the inte:ncﬁoa between a plane
wave and an arbitrary obstacle, the pressure immediately behind the reflected
wave front on the surface of the obstacle, is just twice the pressure behind

the incident wave.
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Eq. (2.6) may then be written

pst)= 2+ 5 dim { “25'([73"'?*'&%‘]*--“%**
?;:;[::%7 A 5 i t][% 2. ;:.t-u } (:

The procedure employed in solving eq. (2.7) for p(s,t) involves the
approximatior of the double integration as follows. Let p(s,t) be assumed
to have a constant mean value over fixed intervals in s and t, Associated

with these intervals are specific regions in s, and z, in which p 1is constant.

In addition let -%}?E-be replaced by a backward difference in time. Then the
o
double integral can be approximsted by a double summation of time retarded
1 OR 1 _ ORr
values of p, vhose coefficients are integrals of 7 a“ and -3 b“

over the associated regions in s, and z e These latter integrall can be
evaluated for a given obstacle shape, With this approximation, eq. (2.7)
can be applied to successive intervals in s, t to yield a set of successive
algebraic equations for the mean values of p. The details of this method
are illustrated in section 3 where a box-shaped obstacle is considered.

Computations have indicated that, since the major contribution to p 1is
made by the terms in eq. (2.7) which can be evaluated exactly, the values of
p(s,t) obtained in this manner are relatively insensitive to the magnitude
of the fixed intervals (provided -%—:- {1). 1t is anticipated that this

will be the case in general,

3. Solution for the Case of a Box-Shaped Obstacle
The specific configuration for which eq. (2.7) has been solved is a

square box whose boundaries are defined by slz x =0, saz y=0, 333 y =8,

Su: X = &, The direction of motion of the 1gc1d¢nt wave {s chosen for
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convenience of symmetry, to be such that the normal to the fromt coincides
with a diagonal of the square, 1.« B » /4 (fig. 2 ). In this case eq.
(2.7) takes the form .

f(st)" a+aZ~3+ Z S“"f“‘[ﬁ z,'%](

J ° R;

Tz.-t i: ase | 2=

at. Rs ;m,] ton-2 * 2o
The symbol 1§ referl to the surface s1 contain:lng the point s, at which

with

the pressure is p". S, 1is not included in the integrations since the ex-

i
pressions containing ;1:0 vanish for a surface of constant curvature (ap-
pendixll ). 1In the oxpﬂuicn for Bj , the term 1:'1 is equal to the con-

i

stant two for § = 1, 2 and is equal to zero for j = 3, 4 (see appendix ).

The regions of integration in s, £ on each surface are determined by the

ellipses:
Sl,l : L-%Nn: = R (SO, 2., %, 4)
Sam: L -ONT =E = R(s% 24)

with the restructions that for 'ou> a, s . 1is set equal to & and for
8,1 £ 0, s,y 18 set equal to zero.

The double integral is approximated by assuming p‘1 (,t) to have the
constant value pi (t<f+1) over the space-time interval (k-1)/Z (s o(k 2,

t -4 (e, Kt - R +1). ‘The time derivative :t is approximated by a back-

wards difference in time, Pk (t=-R+1)- Pk (t - Q) For points s swept
over by the incident front within the time interval being considered, the de-
rivative is replaced by p{(:o)-a for § =1, 2 or pi(to)-o for 3-» 3,k. The
integration may then be replaced by a double summation over k and X o
which the coefficients of p,j‘ (to) are known integrals.

It is also convenient to modify slightly the regions of integratiom in

z, in order to reduce the number of coefficients of pj that need to

s k

o’

be computed. Por this purpose, the regions of integration are approximated by:

tzR(%,S-,X,Y)on S;_ L>\V, 2,3, 4

......
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ou? Sop Still valid and pl betng detines

as gero in the region exterior to the ellipses ¢t - -°/f§ =R, t - Y. Rl
i.e, ahead of the wave front. The coefficients obtained in this manner are

wvith the previocus restrictions on s

in fact the same for any orientation of the incident front relative to the
box.

It then follows that the approximate system to be solved is given by;

4 t P

fa )z $ (2i) = 2*"2,% F+) 33 {ﬁi‘*"*" S+
#e

i;: Q=1 k=

‘ ' '4 [
(ORI e +If:‘t'!m] -'-n:tm)} @7
ka. - (K~ - J- . A, PO
3 \ J { -"! 2% }
Sum = ¥ fan ) 92§ RE Smalgam s
()] Sl [T S Y avs wvevy
Vi, (B O =ty
; \ 4z i t" 3_%‘..
Rpg(m) = F Jdsy ° 2Mids e amiyy
a
BOR (0 e - (1)

!

‘ [1': (t-bl)] = flto (k-141) = f:(,t-t.) if wave has: not passed
over point k between t-§ and t-f£4l1; otherwise
fks. (t-L9) ~ on 3i=),2
fl‘, (t-t+) - 0 on §=35,4

vhere P is the number of space intervals per side.

\ F":
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At each time step t and space point* m on S, eq. (2.7) relates
p: (t) to values of p corresponding to earlisr times. Hence as previously
indicated the system of equations obtained are successive rather than simul-
taneous, Only at the corners do two adjacent space points have an opportuni-
ty to interact within a single time interval, Consequently, at each corner, at
each time step there occur two simultaneous equations. The numerical results
obtained for the choice of eight space steps on each side of the box and
sixteen time steps corresponding to one transit time are listed in tables I

and II and figs. (3"'} )e

L, Dpiscussion of Results,

In the case of the box, the solution in certain regions of space-
time may be identified with known solutions obtained by gecometric acoustics
[3]. For example, for ¢t { a/¥Z the solution along 81’2 coincides with the
solution for an infinite wedge of vertex angle x/2 formed by 81’2. Conse~
quently the results for 31,2 for the first eight time steps may be compared
with the analytic solution given in [3']. Since in this case the solution
depends only upon % ’ {- , 8 comparison of values at all time steps may be
made simultaneously and the convergence of the values for increasing time
may be examined, The results for the eighth time step are plotted along with
the exact solution in fig. ( 3 ) and the agreement is excellent; the
greatest error is less than 34,

A further estimate of the accuracy of the numerical solution may

be gained by a comparison with the rigid box solution given in ref. ‘[5].

Again the sgreement is excellemt,

*The field point is taken in the center of the spacs interval at Q%" 12
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Examination of fig.( 4 ) indicate that the steady state solu-

tionof p=1l everyvhere appears to be approached rapidly even within the

interval of one transit time.
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1.40
1.38
1.34
1.32
1.36
1.34
1.33
1.3%
1,34
1.34
1.34
1.34
1.34
1.34
1.34
1.34

2.00
1.55
1.38
1.35
1.42
1.36
1.38
1.35
1.36
1.35
1.36
1.35
1.35
1.35

1.35
2

¥irst Diffraction at Upper Corner

16~

TABLE OF VALUES ON FRONT FACE OF RIGID BOX

2.00
1.67
1.50
1.38
1.45
1.39
1.41
1.%0
1.38
1.37
1.37
1.37
1.36
1.31
3

UNDER SYMMETRIC PULSE: p(t) =

2,00
1.88
1.64
1.44
1.48
1.4k
1.43
1.39
1.ko
1.37
1.39
1.26
1.21
N

Second Diffraction at Upper

Corner

2.00
2,00
2,00
L75
1.36
1.24
1.15
1.04
1.10
1.05
i

?
3¢

2.00
1.87
1.62
1.33
1.12
1.06
1.09
1.07
1.03
8




10
11
12
13
1%
15
16

0.49
0.93
1.17
1.20
1.07
1.04
1.00
0.99

TABLE OF VALUES ON REAR SURFACE OF RIGID BOX

0.63
0.89
0.94
1.03
0.98
0.93
10

«17-

UNDER SYMMETRIC PULSE

0.53
0.62
0.83
0.92
0.86
11

Second Diffraction at Upper Corner

0.07
0.46
0.70
0.79
12

0.36
0.59
13

0.24
14

¥irst Diffraction at Upper Corner

15

16
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Appendix I

Introduce the fundamental solution to the three dimensional wave equation

$ [(t-te) ~R]
R

3(',tl} FO,t.) b
which satisfies

e — 3R - AW S(i-%) $(F-T)

vhers R= |[F =1l , 7 = (x,9,2) a field point, Ve = (Xe, Yo, o)
a source point and s is theDirac delta function in one, three or four dimen-
sions as tequired.

The secendary 'disturbance' potential 0 . & - QW also satisfies

the wave equation
2 - 1 _

with initial conditions: @s = E’f- =0 ot k=0
Consequently the following equation is true
) 4“05
S(g dVve { 3 V- Qs 9‘7’ 3 33‘%‘ + 9‘ 3*0"} {
Vo )

vhere Vo(u) is a four dimensional volume in space time and the right hand

side 18 lx 9. if the point = {-o, t =t is included in vf,") and O

if it is not,

Two different regions of integration are employed. They are both bounded
by the initial time plane t = O, the incident wave plane | X (osp yswgngche
obstacle surface extended into space time and a surface vhich will include the
characteristic cone (t-to)-k = 0 in the volume of integration. Due to the
singular behavior of the integrand, all contributions come from the surface
(c-.»to)-k = 0 within the region of integration. One region of integration is

taken exterior to and the other interfior to the obstacle surface.
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Consider first, for either region v(") s the texm ¢ gis¢
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3) ) )
= e [a-a3) . =0
lh.\CC g and %t vanish for every valus of t{ t and Q. and
2 arebothlut t_ = 0.
oke °

The remainder of the integral is

m{f""m { w4~ & V'3
.t.,::.dx: jjjdVo‘”{ 9 v.“P; - 0’ vﬂ‘ﬂg
s (a3 - 3

téso
by Green's Theorem where so is the surface bounding the physical space

volume of integration V?) and n, is the outward normal to So.

Adding the two integrals corresponding to these two regions of integra-
tion will give an equation on QS(F,t) in terms of a discontinuity in &s
across the obstacle surface since the normsl, LI is opposite in sign in the

two integrationms,
cetre

AT, = é:&%o gc\g.{ 9 E—g—%’} - [‘Qs] g%.i

vhere { ] represents the discontinuity value and +n‘b is taken toward the
interior of the obstacle in physieal space.
Since (g y 18 continuous, the discontinuity in 9‘ must be identical
to the discontinuity in g. As seen in the text, the interior value of q
is zero and the discontinuity in C? is therefore just the value immediately ex-

terior to the obstacle surface,

Xorkee .
av (9-P) = ts dke gd.s'. {. 3?;,%, -4 %%.g

0t 0
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Because of the behavior of g, the time integration can be taken thru

the surface integration and carried out giving q. ( 2.4).

| R
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Appendix 1l-a

The immediate neighborhood of a point on any curved surface may be con-
sidered plane as an approximation which becomes exact as the neighborhood
shrinks to the point. To find the pressure field at a point immediately
behind the wave 'front on an obstacle surface, it is therefore sufficient to
consider the interaction of the wave front with an infinite plane obstacle.
The result ‘- obtained will of course be equally useful in the specific ex-
ample of the square box for the two planes which compose the "front" of the

box. The integral equation is still valid but now is applied only to S

- QiR J ol R](ED

s 7 approaches a point on s1 » X approaches zero. However, %%”’ .f] %
must also approach zero except at the indeterminate point R = 0, i.e. the
location of the field point on the surface. To avoid this indeterminary
the point R = O is removed from the integration by distorting the surface
in the meighborhood of R = O from a plane to a semisphers of radius )

.o about R = 0. Over this surface g%;‘ . 1 « The integration is then in
two parts; the semisphere and the remainder of the plane surface. The
-latter integration is zero since %%' is sero and the former integra-

tion is
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3ince in the limit, the terms 9‘(?0,10) and f‘(?. ,%)  can.be removed

from the integration and evaluated at 'to =t, R=0,
- & S
4 * (r,£) = y.['h -X wsp-ysmpJ‘,, *r 3 & (VL)
PUEE) = R (T-vswme)/y
PrEL = 2

Appendix II-b
Behind the \uve.front on each of the rear surfaces of the square box
exists a region in space time which is not influenced by any of the corners
of the box., The integrations required to determine the pressure in these
regions from Bq. ( X.7] ) are then taken only over the neighboring fromt
surface with values for p on that surface corresponding to the infinite

plane solution. For example, consider a point on surface i = 3

.- 1 28
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with integration limits given by

t- %5 = [ cx-x.)‘nf],‘.,o

The tera 2,15’ is left in integral form for comveniences.

You
\
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dor -

!.!. 3




«22«

vhere the limits of integration are the roots of
. 1 “ . .
\tvlo/uz) -(a-%)-x =0

This follows from the fact that Y, .  must be greater than zero wvhile
You must be less than a in order that the ends of the front surface (i.e.
corners) will not play any role in the integration,

The double integral is reduced to a single integral.
You Rox 3 JIE-WR)'= (a-Ye) S-XT

-Xe)
%sdv.jdi.z ' = -3
o0 Yol . l_'l.‘-o (%~Xo)% (Q‘Yo)‘] Jﬁo"‘x‘x’)""“'y‘)
Ye r ry g ‘
.omax g, z [Gewror) = (Ve X" §
- ™ . (X (a~Ye)') (k- Yo/uZ)
Combining this integral with the term 2. ’3‘ gives
You
T YOS IS S i
W o (X*+ (a-¥0)*) [(2-Yorm) - (a-Yo) ™~ X*
= - <

.. P m2-2x0

The region in which this solution will be valid on the rear surface

S5 ist {x ¢t/ /2 from t {x corresponding to a-yo) 0 and

x {t/ /2 limiting points to those behind the wave front,
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Appendix III b

The expressions for the iB’. obtained by integration are given below
together with the conditions under which each expression 1s valid, These con-
ditions are obtained from the limits in the integral expressions for the iB:i
and may be interpreted in terms of geometric acoustic theory as representing

the diffraction effects produced by the corners of the box.
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and a similar set for L)’L:"m)where Xm or Ym 2m-1 NE] an’d p is
the number of steps in space per side,

Therefore only four sets of coefficients need be computed for each
value of m, The integral expressions for the coefficients are simplified
by using a constant average value in place of Rj over each region of inte-
gration, As Rj can never be zero on any of the surfaces of integration and
is practically constant over all separate regions of integration except those

near the corners this approximation is quite good, Values near the corners

must be obtained without this approximation.
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Appendix IV

It is of ‘interest to note that the pressure at the corner of
an infinite rigid wedge of arbitrary angle o may be found exactly from
the integral equation

\
‘P: Qw +4"“- SsASo iRL“P R?}(amo
S, to2k-R
2R
Since 3/Mo 18 zero on both surfacesfor a field point at the corner
r = a the only contribution comes from the point R = O as in appendix
o
I1la although only a portion W of the semi-sphere is required to

exclude the corner point from the surface of integration in this case.

c?];m = ‘?‘N]F:o * A—‘v l—:_“' AW (?]F=
9];:0 = qﬁ‘—a( Q“‘]r o

which i8 an agreement with the known infinite rigid wedge solution,

Plewe = 3 for -

r=o

“/a,
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